DEPARTMENT OF COMPUTER SCIENCE

CSCI-564 CONSTRAINT PROCESSING AND HEURISTIC SEARCH

LECTURE 8 - AUTOMATICALLY CREATED HEURISTICS (CONTINUED)

Dr. Jean-Alexis Delamer

Recap

- Without a heuristic we can only search blindly.
 - Highly computational, we need to check each node.
- The heuristic guide the search.
 - It's used to reduce the time complexity of the search.

Is it always true? Why?

• A heuristic search is only beneficial if the computational effort to compute *h* is less than the savings generated by using *h*.

• Example:

StFX

- Blind search, BFS O(|V| + |E|)
- $A^* O(|E|)$
 - Computing h, O(|V| + |E|)
 - Total complexity O(|V| + 2|E|)

You gain $O(\mathbb{K})$, good!

You added O(|E|)

- Theorem (Valtorta's Theorem):
 - Let *u* be any state necessarily expanded, when the problem (*s*, *t*) is solved in *S* with BFS;
 - $\phi: S \to S'$ be any abstraction mapping, and heuristic h(u) be computed by blindly searching from $\phi(u)$ to $\phi(t)$.
 - If the problem is solved by the A* algorithm using h, either u itself will be expanded, or $\phi(u)$ will be expanded.

- **Proof**: When A* terminates, *u* will either be *closed*, *open*, or *unvisited*.
 - If *u* is *closed*, it has already been expanded.
 - If u is open, then $h_{\phi}(u)$ must have been computed during search. $h_{\phi}(u)$ is computed by searching S' starting at $\phi(u)$. If $\phi(u) \neq \phi(t)$, the first step is to expand $\phi(u)$; otherwise $h_{\phi}(u) = 0$ and u itself is expanded.
 - If *u* is *unvisited*, on every path from *s* to *u* there must be a state that was added to *open* during search but never expanded.

StFX

- **Proof**: When A* terminates, *u* will either be *closed*, *open*, or *unvisited*.
 - If *u* is *unvisited*, on every path from *s* to *u* there must be a state that was added to *open* during search but never expanded.
 - Let v be any such state on the shortest path from s to u. Because v was opened, $h_{\phi}(v)$ must have been computed. We will show that computing $h_{\phi}(v)$, $\phi(u)$ is necessarily expanded.

S $h_{\phi}(v)$ Shortest path to u

DR. JEAN-ALEXIS DELAMER - STFX UNIVERSITY

- **Proof**: When A* terminates, *u* will either be *closed*, *open*, or *unvisited*.
 - If *u* is *unvisited*, on every path from *s* to *u* there must be a state that was added to *open* during search but never expanded.
 - Let v be any such state on the shortest path from s to u. Because v was opened, $h_{\phi}(v)$ must have been computed. To compute $h_{\phi}(v)$, $\phi(u)$ is necessarily expanded.
 - Because u is expanded by blind search, $\delta(s, u) < \delta(s, t)$. Because v is on the shortest path, $\delta(s, v) + \delta(v, u) = \delta(s, u) < \delta(s, t)$

StFX

• Let v be any such state on the shortest path from s to u. Because v was opened, $h_{\phi}(v)$ must have been computed. To compute $h_{\phi}(v)$, $\phi(u)$ is necessarily expanded.

 $\delta(v,u)$

- Because u is expanded by blind search, $\delta(s, u) < \delta(s, t)$. Because v is on the shortest path, $\delta(s, v) + \delta(v, u) = \delta(s, u) < \delta(s, t)$
- Because v was never expanded by A*, $\delta(s, v) + h_{\phi}(v) > \delta(s, t)$.
- Combining, $\delta(v, u) < h_{\phi}(v) = \delta(v, t)$
- Since ϕ is an abstraction, $\delta_{\phi}(v, u) < \delta(v, u)$, which gives $\delta_{\phi}(v, u) < \delta_{\phi}(v, t)$.
- Therefore, $\phi(u)$ is necessarily expanded.

 $\delta(s,v)$

 $h_{\phi}(v)$

 $\delta(s, u)$

 $\delta(s,t)$

• Corollary:

- For an embedding ϕ , A^{*} using h computed by blind search in the abstract problem space
 - necessarily expands every state that is expanded by blind search in the original space.
- It assumes that the heuristic is calculated once for a problem instance.
 - You could amortize the cost , if you store the heuristic to reuse it.
- This theorem does not apply to homomorphism abstractions.

- This theorem does not apply for homomorphism abstractions.
- Example:

StFX

- Problem of finding a path between (1,1) and (1,N)
- Abstraction transformation ignoring the second coordinate.
- Uninformed search will expand $\Omega(N^2)$ nodes
- Heuristic will only require O(N).

X

• Hierarchical A*:

- Use an arbitrary number of abstraction transformation layers.
- Each layer named ϕ_1, \dots, ϕ_N
- When the heuristic call for the value u in the concrete problem, $\phi_1(u)$ is called.
- Each layer calling the upper layer.

- An issue is that it would repeatedly solve the same instances at the higher levels.
 - Because different concrete states can have the same state at higher levels.
- How can we solve this issue?
 - Save the heuristic values of all the nodes in shortest path computed at the abstract level.
- Does it respect the properties defined at the beginning?
 - No, the heuristic would no longer be monotone.

- Definition (Monotonic Heuristic):
 - Let $(s_0, ..., s_k)$ be any path, $g(s_i)$ be the path cost of $(s_0, ..., s_k)$, and define $f(s_i) = g(s_i) + h(s_i)$. A goal estimate h is a monotone heuristic if $f(s_i) \le f(s_j)$ for all $j > i, 0 \le i, j \le k$; that is, the estimate of the total path cost is nondecreasing from a node to its successor
- The heuristic is nonmonotone in this case because:
 - Nodes that lay on the solution path of a previous search can have high *h*-values.
 - Whereas their neighbors off this path still have their original heuristic value
- You didn't explore everything yet!

- What happens with nonmonotone heuristic?
 - Reopening of nodes.
 - Nodes can be closed even if the shortest path has not been found.
- A solution?
 - Yes, we don't care in this case.

- Consider the following:
 - A node u can be prematurely closed if every shortest path passes through some nodes v for which the shortest path is known.
 - If no node v is part of the shortest path between s and t neither is u and the premature closing is irrelevant.
 - On the other hand, all nodes on the shortest path from v to t have already saved the exact estimate and will only be expanded once.

- Optimal path caching:
 - An optimization technique
 - Save the value of $h^*(u) = \delta(u, T)$ and the exact solution path found
 - When a node u with h^{*}(u) is encountered, the goal state is added to Open instead of expanding u.

- What happen when you increase the number of layer?
 - More concrete states are assigned to the same abstract state.
 - The heuristic becomes less informative
 - Less discriminating.
- It's called the granularity of abstractions

Exercise

• Represent Tower of Hanoi problem so it can be solved as a Hierarchical A*.

