
CSCI-564
CONSTRAINT PROCESSING AND
HEURISTIC SEARCH

Dr. Jean-Alexis Delamer

DEPARTMENT OF COMPUTER SCIENCE

L E C T U R E 8 - A U TO M AT I C A L LY C R E AT E D H E U R I S T I C S (C O N T I N U E D)

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Without a heuristic we can only search blindly.
• Highly computational, we need to check each node.

• The heuristic guide the search.
• It’s used to reduce the time complexity of the search.

Is it always true? Why?

Recap

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• A heuristic search is only beneficial if the computational effort to compute ℎ is
less than the savings generated by using ℎ.

• Example:
• Blind search, BFS 𝑂 𝑉 + |𝐸|
• A* 𝑂(𝐸)

• Computing ℎ, 𝑂 𝑉 + 𝐸
• Total complexity 𝑂 𝑉 + 2 𝐸

Valtorta’s Theorem

You gain 𝑂(𝑉), good!

You added 𝑂(|𝐸|)

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Theorem (Valtorta’s Theorem):
• Let 𝑢 be any state necessarily expanded, when the problem (𝑠, 𝑡) is solved in 𝑆 with BFS;
• 𝜙: 𝑆 → 𝑆′ be any abstraction mapping, and heuristic ℎ(𝑢) be computed by blindly searching

from 𝜙(𝑢) to 𝜙(𝑡).
• If the problem is solved by the A* algorithm using ℎ, either 𝑢 itself will be expanded, or
𝜙(𝑢) will be expanded.

Valtorta’s Theorem

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Proof: When A* terminates, 𝑢 will either be closed, open, or unvisited.
• If 𝑢 is closed, it has already been expanded.
• If 𝑢 is open, then ℎ!(𝑢) must have been computed during search. ℎ! 𝑢 is computed by

searching 𝑆’ starting at 𝜙(𝑢). If 𝜙(𝑢) ≠ 𝜙(𝑡), the first step is to expand 𝜙(𝑢); otherwise
ℎ! 𝑢 = 0 and 𝑢 itself is expanded.

• If 𝑢 is unvisited, on every path from 𝑠 to 𝑢 there must be a state that was added to open
during search but never expanded.

Valtorta’s Theorem

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Proof: When A* terminates, 𝑢 will either be closed, open, or unvisited.
• If 𝑢 is unvisited, on every path from 𝑠 to 𝑢 there must be a state that was added to open

during search but never expanded.
• Let 𝑣 be any such state on the shortest path from 𝑠 to 𝑢. Because 𝑣 was opened, ℎ! 𝑣 must

have been computed. We will show that computing ℎ! 𝑣 , 𝜙(𝑢) is necessarily expanded.

Valtorta’s Theorem

s

u

t

v

Shortest path to u

ℎ!(𝑣)

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Proof: When A* terminates, 𝑢 will either be closed, open, or unvisited.
• If 𝑢 is unvisited, on every path from 𝑠 to 𝑢 there must be a state that was added to open

during search but never expanded.
• Let 𝑣 be any such state on the shortest path from 𝑠 to 𝑢. Because 𝑣 was opened, ℎ! 𝑣 must

have been computed. To compute ℎ! 𝑣 , 𝜙(𝑢) is necessarily expanded.
• Because 𝑢 is expanded by blind search, 𝛿 𝑠, 𝑢 < 𝛿(𝑠, 𝑡). Because 𝑣 is on the shortest path,
𝛿 𝑠, 𝑣 + 𝛿 𝑣, 𝑢 = 𝛿 𝑠, 𝑢 < 𝛿(𝑠, 𝑡)

Valtorta’s Theorem

s

u

t

v

Shortest path to 𝑢

ℎ!(𝑣)

𝛿(𝑠, 𝑢)

𝛿(𝑠, 𝑡)

𝛿 𝑠, 𝑣

𝛿 𝑣, 𝑢

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Let 𝑣 be any such state on the shortest path from 𝑠 to 𝑢. Because 𝑣 was opened, ℎ! 𝑣 must have been computed. To
compute ℎ! 𝑣 , 𝜙(𝑢) is necessarily expanded.

• Because 𝑢 is expanded by blind search, 𝛿 𝑠, 𝑢 < 𝛿(𝑠, 𝑡). Because 𝑣 is on the shortest path, 𝛿 𝑠, 𝑣 + 𝛿 𝑣, 𝑢 =
𝛿 𝑠, 𝑢 < 𝛿(𝑠, 𝑡)

• Because 𝑣 was never expanded by A*, 𝛿 𝑠, 𝑣 + ℎ! 𝑣 > 𝛿(𝑠, 𝑡).

• Combining, 𝛿 𝑣, 𝑢 < ℎ! 𝑣 = 𝛿(𝑣, 𝑡)

• Since 𝜙 is an abstraction, 𝛿! 𝑣, 𝑢 < 𝛿 𝑣, 𝑢 , which gives 𝛿! 𝑣, 𝑢 < 𝛿!(𝑣, 𝑡).

• Therefore, 𝜙(𝑢) is necessarily expanded.∎

Valtorta’s Theorem

s

u

t

v

Shortest path to u

ℎ!(𝑣)

𝛿(𝑠, 𝑢)

𝛿(𝑠, 𝑡)

𝛿 𝑠, 𝑣

𝛿 𝑣, 𝑢

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Corollary:
• For an embedding 𝜙, A* − using ℎ computed by blind search in the abstract problem space
− necessarily expands every state that is expanded by blind search in the original space.

• It assumes that the heuristic is calculated once for a problem instance.
• You could amortize the cost , if you store the heuristic to reuse it.

• This theorem does not apply to homomorphism abstractions.

Valtorta’s Theorem

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• This theorem does not apply for homomorphism abstractions.
• Example:

• Problem of finding a path between (1,1) and (1,N)
• Abstraction transformation ignoring the second coordinate.
• Uninformed search will expand Ω(𝑁") nodes
• Heuristic will only require 𝑂(𝑁).

Valtorta’s Theorem

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Hierarchical A*:
• Use an arbitrary number of abstraction transformation layers.
• Each layer named 𝜙#, … , 𝜙$
• When the heuristic call for the value 𝑢 in the concrete problem, 𝜙#(𝑢) is called.
• Each layer calling the upper layer.

Hierarchical A*

𝜙"

𝜙# 𝜙#

𝜙"

u t
D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• An issue is that it would repeatedly solve the same instances at the higher
levels.
• Because different concrete states can have the same state at higher levels.

• How can we solve this issue?
• Save the heuristic values of all the nodes in shortest path computed at the abstract level.

• Does it respect the properties defined at the beginning?
• No, the heuristic would no longer be monotone.

Hierarchical A*

𝜙"

𝜙# 𝜙#

𝜙"

u tD R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Definition (Monotonic Heuristic):
• Let (𝑠%, … , 𝑠&) be any path, 𝑔(𝑠') be the path cost of (𝑠%, … , 𝑠&), and define 𝑓 𝑠' =
𝑔 𝑠' + ℎ 𝑠' . A goal estimate ℎ is a monotone heuristic if 𝑓 𝑠' ≤ 𝑓 𝑠(for all 𝑗 > 𝑖, 0 ≤
i, j ≤ k; that is, the estimate of the total path cost is nondecreasing from a node to its
successor

• The heuristic is nonmonotone in this case because:
• Nodes that lay on the solution path of a previous search can have high ℎ-values.
• Whereas their neighbors off this path still have their original heuristic value

• You didn’t explore everything yet!

Hierarchical A*

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• What happens with nonmonotone heuristic?
• Reopening of nodes.
• Nodes can be closed even if the shortest path has not been found.

• A solution?
• Yes, we don’t care in this case.

Hierarchical A*

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Consider the following:
• A node 𝑢 can be prematurely closed if every shortest path passes through some nodes 𝑣 for

which the shortest path is known.
• If no node 𝑣 is part of the shortest path between 𝑠 and 𝑡 neither is 𝑢
and the premature closing is irrelevant.

• On the other hand, all nodes on the shortest path from 𝑣 to 𝑡 have already saved the exact
estimate and will only be expanded once.

Hierarchical A*

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Optimal path caching:
• An optimization technique
• Save the value of ℎ∗ 𝑢 = 𝛿(𝑢, 𝑇) and the exact solution path found
• When a node 𝑢 with ℎ∗(𝑢) is encountered, the goal state is added to Open instead of

expanding 𝑢.

Hierarchical A*

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• What happen when you increase the number of layer?
• More concrete states are assigned to the same abstract state.
• The heuristic becomes less informative

• Less discriminating.

• It’s called the granularity of abstractions

Hierarchical A*

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Represent Tower of Hanoi problem so it can be solved as a Hierarchical A*.

Exercise

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

