St. Francis Xavier UNIVERSITY

CSCI-564
 CONSTRAINT PROCESSING AND HEURISTIC SEARCH

lecture 8 - AUtomatically Created heuristics (CONTinued)

Dr. Jean-Alexis Delamer

Recap

- Without a heuristic we can only search blindly.
- Highly computational, we need to check each node.
- The heuristic guide the search.
- It's used to reduce the time complexity of the search.

> Is it always true? Why?

Valtorta's Theorem

- A heuristic search is only beneficial if the computational effort to compute h is less than the savings generated by using h.
- Example:
- Blind search, BFS $O(|V|+|E|)$
- A* $O(|E|)$
- Computing $h, O(|V|+|E|)$
- Total complexity $O(|V|+2|E|)$

You added $O(|E|)$

Valtorta's Theorem

- Theorem (Valtorta's Theorem):
- Let u be any state necessarily expanded, when the problem (s, t) is solved in S with BFS;
- $\phi: S \rightarrow S^{\prime}$ be any abstraction mapping, and heuristic $h(u)$ be computed by blindly searching from $\phi(u)$ to $\phi(t)$.
- If the problem is solved by the A* algorithm using h, either u itself will be expanded, or $\phi(u)$ will be expanded.

Valtorta's Theorem

- Proof: When A* terminates, u will either be closed, open, or unvisited.
- If u is closed, it has already been expanded.
- If u is open, then $h_{\phi}(u)$ must have been computed during search. $h_{\phi}(u)$ is computed by searching S^{\prime} starting at $\phi(u)$. If $\phi(u) \neq \phi(t)$, the first step is to expand $\phi(u)$; otherwise $h_{\phi}(u)=0$ and u itself is expanded.
- If u is unvisited, on every path from s to u there must be a state that was added to open during search but never expanded.

Valtorta's Theorem

- Proof: When A* terminates, u will either be closed, open, or unvisited.
- If u is unvisited, on every path from s to u there must be a state that was added to open during search but never expanded.
- Let v be any such state on the shortest path from s to u. Because v was opened, $h_{\phi}(v)$ must have been computed. We will show that computing $h_{\phi}(v), \phi(u)$ is necessarily expanded.

Valtorta's Theorem

- Proof: When A* terminates, u will either be closed, open, or unvisited.
- If u is unvisited, on every path from s to u there must be a state that was added to open during search but never expanded.
- Let v be any such state on the shortest path from s to u. Because v was opened, $h_{\phi}(v)$ must have been computed. To compute $h_{\phi}(v), \phi(u)$ is necessarily expanded.
- Because u is expanded by blind search, $\delta(s, u)<\delta(s, t)$. Because v is on the shortest path, $\delta(s, v)+\delta(v, u)=\delta(s, u)<\delta(s, t)$

Valtorta's Theorem

- Let v be any such state on the shortest path from s to u. Because v was opened, $h_{\phi}(v)$ must have been computed. To compute $h_{\phi}(v), \phi(u)$ is necessarily expanded.
- Because u is expanded by blind search, $\delta(s, u)<\delta(s, t)$. Because v is on the shortest path, $\delta(s, v)+\delta(v, u)=$ $\delta(s, u)<\delta(s, t)$
- Because v was never expanded by $\mathrm{A}^{*}, \delta(s, v)+h_{\phi}(v)>\delta(s, t)$.
- Combining, $\delta(v, u)<h_{\phi}(v)=\delta(v, t)$
- Since ϕ is an abstraction, $\delta_{\phi}(v, u)<\delta(v, u)$, which gives $\delta_{\phi}(v, u)<\delta_{\phi}(v, t)$.
- Therefore, $\phi(u)$ is necessarily expanded

Valtorta's Theorem

- Corollary:
- For an embedding ϕ, A^{*} - using h computed by blind search in the abstract problem space - necessarily expands every state that is expanded by blind search in the original space.
- It assumes that the heuristic is calculated once for a problem instance.
- You could amortize the cost, if you store the heuristic to reuse it.
- This theorem does not apply to homomorphism abstractions.

Valtorta's Theorem

- This theorem does not apply for homomorphism abstractions.
- Example:
- Problem of finding a path between $(1,1)$ and $(1, N)$
- Abstraction transformation ignoring the second coordinate.
- Uninformed search will expand $\Omega\left(N^{2}\right)$ nodes
- Heuristic will only require $O(N)$.

Hierarchical A*

- Hierarchical A*:
- Use an arbitrary number of abstraction transformation layers.
- Each layer named $\phi_{1}, \ldots, \phi_{N}$
- When the heuristic call for the value u in the concrete problem, $\phi_{1}(u)$ is called.
- Each layer calling the upper layer.

Hierarchical A*

- An issue is that it would repeatedly solve the same instances at the higher levels.
- Because different concrete states can have the same state at higher levels.
- How can we solve this issue?
- Save the heuristic values of all the nodes in shortest path computed at the abstract level.
- Does it respect the properties defined at the beginning?
- No, the heuristic would no longer be monotone.

Hierarchical A*

- Definition (Monotonic Heuristic):
- Let $\left(s_{0}, \ldots, s_{k}\right)$ be any path, $g\left(s_{i}\right)$ be the path cost of $\left(s_{0}, \ldots, s_{k}\right)$, and define $f\left(s_{i}\right)=$ $g\left(s_{i}\right)+h\left(s_{i}\right)$. A goal estimate h is a monotone heuristic if $f\left(s_{i}\right) \leq f\left(s_{j}\right)$ for all $j>i, 0 \leq$ $\mathrm{i}, \mathrm{j} \leq \mathrm{k}$; that is, the estimate of the total path cost is nondecreasing from a node to its successor
- The heuristic is nonmonotone in this case because:
- Nodes that lay on the solution path of a previous search can have high h-values.
- Whereas their neighbors off this path still have their original heuristic value
- You didn't explore everything yet!

Hierarchical A*

- What happens with nonmonotone heuristic?
- Reopening of nodes.
- Nodes can be closed even if the shortest path has not been found.
- A solution?
- Yes, we don't care in this case.

Hierarchical A*

- Consider the following:
- A node u can be prematurely closed if every shortest path passes through some nodes v for which the shortest path is known.
- If no node v is part of the shortest path between s and t neither is u and the premature closing is irrelevant.
- On the other hand, all nodes on the shortest path from v to t have already saved the exact estimate and will only be expanded once.

Hierarchical A*

- Optimal path caching:
- An optimization technique
- Save the value of $h^{*}(u)=\delta(u, T)$ and the exact solution path found
- When a node u with $h^{*}(u)$ is encountered, the goal state is added to Open instead of expanding u.

Hierarchical A*

- What happen when you increase the number of layer?
- More concrete states are assigned to the same abstract state.
- The heuristic becomes less informative
- Less discriminating.
- It's called the granularity of abstractions

DR. JEAN-ALEXIS DELAMER

Exercise

- Represent Tower of Hanoi problem so it can be solved as a Hierarchical A*.

